Micro-post: Solve the quadratic equation without catastrophic cancellation using FMA and no branching.

Given $a$, $b$ and $c$ we want to find one or both roots $r_0$ and $r_1$:

\[ax^2 + bx + c = a\left(\left(x-r_0\right)\left(x-r_1\right)\right)\]


Recall we have two sources of catastrophic cancellation:

  1. $b^2 \gg \left\| 4ac \right\| $ which we’ll fix with an algebraic rewrite
  2. $b^2 \approx 4ac $ which we’ll fix by computing in extended precision.

Calling $r_1$ the larger and $r_0$ the smaller magnitude root we can rewrite the standard equation as follows:

\[\begin{align*} r_1 & = \frac{-\left(b + \text{sgn}\left(b\right)\sqrt{b^2-4ac}\right) }{2a} \\ & = \frac{b + \text{sgn}\left(b\right)\sqrt{b^2-4ac}}{-2a} \\ \\ r_0 & = \frac{2c}{-\left(b + \text{sgn}\left(b\right)\sqrt{b^2-4ac}\right) } \\ & = \frac{-2c}{b + \text{sgn}\left(b\right)\sqrt{b^2-4ac}} \end{align*}\]


where $\text{sgn}$ is the sign function:

\[\text{sgn}\left(x\right) = \begin{cases} 1 & x \geq 0 \\[2ex] -1 & x < 0 \end{cases}\]


The remaining part is computing $b^2-4ac$ in extended precision which is a special case of extended precision $ab+cd$. This is covered in detail in “Further analysis of Kahan’s algorithm for the accurate computation of 2x2 determinants”


Toy code which assumes two real roots (including $r_0=r_1$)

// Please do use -fno-math-errno
inline float f32_sqrt(float x) { return sqrtf(x); }

typedef struct { float h,l; } f32_pair_t;

// ab-cd
// * r within +/- 3/2 ulp
// * r within +/-   1 ulp, if sign(ab) != sign(cd)
inline float f32_mms(float a, float b, float c, float d)
{
  float t = c*d;
  float e = fmaf(c,d,-t);
  float f = fmaf(a,b,-t);
  return f-e;
}

// larger magnitude root
float f32_quadratic_max(float a, float b, float c)
{
  float t0 = f32_sqrt(f32_mms(b,b,4.f*a,c));
  float t1 = b+copysignf(t0,b);
  return t1/(-2.f*a);
}

// smaller magnitude root
float f32_quadratic_min(float a, float b, float c)
{
  float t0 = f32_sqrt(f32_mms(b,b,4.f*a,c));
  float t1 = b+copysignf(t0,b);
  return (-2.f*c)/t1;
}

void f32_quadratic(f32_pair_t* r, float a, float b, float c)
{
  float t0 = f32_sqrt(f32_mms(b,b,4.f*a,c));
  float t1 = b+copysignf(t0,b);

  r->h = t1/(-2.f*a);
  r->l = (-2.f*c)/t1;
}



Comments





© 2024 Marc B. Reynolds
all original content is public domain under UNLICENSE