January 10th, 2020 Micro-post: Solve the quadratic equation without catastrophic cancellation using FMA and no branching. Given $a$, $b$ and $c$ we want to find one or both roots $r_0$ and $r_1$: \[ax^2 + bx + c = a\left(\left(x-r_0\right)\left(x-r_1\right)\right)\] Recall we have two sources of catastrophic cancellation: $b^2 \gg \left\| 4ac \right\| $ which we’ll fix with an algebraic rewrite $b^2 \approx 4ac $ which we’ll fix by computing in extended precision. Calling $r_1$ the larger and $r_0$ the smaller magnitude root we can rewrite the standard equation as follows: \[\begin{align*} r_1 & = \frac{-\left(b + \text{sgn}\left(b\right)\sqrt{b^2-4ac}\right) }{2a} \\ & = \frac{b + \text{sgn}\left(b\right)\sqrt{b^2-4ac}}{-2a} \\ \\ r_0 & = \frac{2c}{-\left(b + \text{sgn}\left(b\right)\sqrt{b^2-4ac}\right) } \\ & = \frac{-2c}{b + \text{sgn}\left(b\right)\sqrt{b^2-4ac}} \end{align*}\] where $\text{sgn}$ is the sign function: \[\text{sgn}\left(x\right) = \begin{cases} 1 & x \geq 0 \\[2ex] -1 & x < 0 \end{cases}\] The remaining part is computing $b^2-4ac$ in extended precision which is a special case of extended precision $ab+cd$. This is covered in detail in “Further analysis of Kahan’s algorithm for the accurate computation of 2x2 determinants” Toy code which assumes two real roots (including $r_0=r_1$) // Please do use -fno-math-errno inline float f32_sqrt(float x) { return sqrtf(x); } typedef struct { float h,l; } f32_pair_t; // ab-cd // * r within +/- 3/2 ulp // * r within +/- 1 ulp, if sign(ab) != sign(cd) inline float f32_mms(float a, float b, float c, float d) { float t = c*d; float e = fmaf(c,d,-t); float f = fmaf(a,b,-t); return f-e; } // larger magnitude root float f32_quadratic_max(float a, float b, float c) { float t0 = f32_sqrt(f32_mms(b,b,4.f*a,c)); float t1 = b+copysignf(t0,b); return t1/(-2.f*a); } // smaller magnitude root float f32_quadratic_min(float a, float b, float c) { float t0 = f32_sqrt(f32_mms(b,b,4.f*a,c)); float t1 = b+copysignf(t0,b); return (-2.f*c)/t1; } void f32_quadratic(f32_pair_t* r, float a, float b, float c) { float t0 = f32_sqrt(f32_mms(b,b,4.f*a,c)); float t1 = b+copysignf(t0,b); r->h = t1/(-2.f*a); r->l = (-2.f*c)/t1; } Comments math (34) FMA (3) , floating point (6)